ESPN/ERA Registry
 REGISTRY

european society for paediatric nephrology

ESPN http://espn-online.ora/index.php
ESPN/ERA Reqistry http://www.espn-rea.org

An update on the Registry- February 2022

Jérôme Harambat and Enrico Vidal
As members of the ESPN/ERA Registry committee we would like to thank you again for your participation in and efforts to the Registry.

Currently, 35 countries are participating in the Registry, providing information on more than 24,000 patients who started KRT before the age of 20 years.

In 2021, three papers based on Registry data have been published and another one has been submitted. The full publication list can be found below.
An important part of the Registry's research activities arise from the successful internship programme. In 2021, two fellows joined the ESPN/ERA Registry. Henna Kaijansinkko a paediatric nephrologist from Helsinki, Finland, started a project on cancer as cause of ESKD. Evgenia Preka from, London, UK continued her part-time PhD trajectory at the Registry. She is currently working on two papers on retransplantation in adulthood after

If you are also interested in performing a research project on the Registry or you would like to know more about participating in the ESPN/ERA Registry, please contact Marjolein Bonthuis:
m.bonthuis@amsterdamumc.nl

We would like to thank you for your fruitful collaboration and hope to work with you in the future to improve paediatric nephrology care and research in Europe.

Data analyses and publications

The ESPN/ERA Registry collects data on KRT on an annual basis via national renal registries in Europe. So far, data have been included from thirteen subsequent years.

In 2019, the overall incidence was 5.0 per million age-related population (pmarp) and ranged from 0.0, as no patients started KRT in that year, to 8.6 pmarp. The prevalence was 35.5 pmarp and also showed a wide range from 5.5 to 89.0 pmarp. Five-year patient survival was 93.3% after the start of KRT and most patients died of infections.

Three papers have been published last year. Pediatric nephrology published two papers. The first one was our paper on 10 year trends in the epidemiology and outcomes of paediatric KRT in Europe, showing a stable incidence, but an increasing prevalence in the past 10 years. Fiveyear patient survival remained $>93 \%$ and did not change over time. Secondly, Pediatric nephrology published an Educational review on growth, which was part of the Festschrift for Lesley Rees. We are very glad we could contribute to this collection.

A paper on the association between body weight and outcome in small children receiving a kidney transplant has been published online in Transplantation.
Another paper on comorbidities at start of KRT has been submitted to a scientific journal.
We are very proud about all these results, which would not have been possible without your great dedication and efforts, for which we are very grateful.

Thank you all for making this possible!

Incident paediatric patients accepted for kidney replacement therapy in 2019 and general population characteristics of countries contributing 2019 data to the ESPN/ERA Registry.

Country	Total KRT patients 0-14 years		General Population Characteristics		
			Children $0-14$ years	Total Population 0-99 years	Children $0-14$ years
	N	pmarp	N	N	percent
Albania	3	6.2	486,136	2,854,192	17.5
Austria	8	6.3	1,278,692	8,858,775	14.4
Belarus	5	3.1	1,604,711	9,465,675	17.0
Bosnia and Herzegovina	0	0.0	543,719	3,531,159	15.4
Bulgaria	3	3.0	1,003,551	6,975,759	14.3
Cyprus	1	7.1	141,793	881,950	16.2
Czech Republic	6	3.5	1,701,632	10,671,871	15.8
Denmark	6	6.3	955,294	5,814,425	16.6
Estonia	0	0.0	218,063	1,326,897	16.4
Finland	5	5.7	876,636	5,521,608	16.1
France	53	4.4	12,076,063	67,248,923	18.1
Georgia	4	5.3	749,720	3,726,549	20.1
Germany-CERTAIN*	6	0.5	11,341,037	83,092,963	13.5
Greece	2	1.3	1,532,298	10,721,584	14.4
Hungary	6	4.2	1,421,538	9,771,141	14.5
Iceland	0	0.0	68,018	360,562	19.2
Ireland	3	3.0	1,006,912	4,934,340	20.7
Latvia	1	3.3	305,134	1,913,821	15.8
Lithuania	2	4.7	422,300	2,794,138	15.1
Malta	0	0.0	68,330	504,061	13.8
North Macedonia	2	5.9	338,293	2,076,521	16.4
Norway	8	8.6	932,542	5,347,897	17.6
Poland	24	4.1	5,847,930	37,965,476	15.3
Portugal	9	6.4	1,402,276	10,286,263	13.8
Republic of Serbia	1	1.0	992,593	6,945,234	14.3
Romania	16	5.3	3,036,810	19,371,647	15.6
Russia	85	3.9	21,534,456	142,368,368	15.1
Slovakia	3	3.5	860,881	5,454,146	15.7
Slovenia	0	0.0	314,754	2,088,385	15.1
Spain	59	8.5	6,903,637	47,134,840	14.9
Sweden	10	5.5	1,827,275	10,278,887	17.8
the Netherlands	9	3.3	2,732,958	17,344,871	16.0
Turkey*	61	3.2	19,198,338	82,579,437	23.5
Ukraine	34	5.3	6,386,756	41,732,779	15.4
United Kingdom*	87	7.8	11,095,276	61,333,507	18.1
Total*	455	5.0	90,665,750	567,615,750	16.0

*Data from the German transplantation registry are based on 18 transplantation centres. In 2019, 130 patients under the age of 21 years were transplanted in Germany. In Italy, (pre-emptive) transplantation patients are not included; these numbers are an underestimation of true incidence. The incidence in Turkey is an underestimation of the true incidence. Therefore, Germany, and Turkey were excluded from the overall incidence. \#Does not include Scottish patients.

Treatment modality at day 1, among patients < 15 years of age starting KRT in 2019. Patients from Germany, and Turkey are excluded.

	\mathbf{N}	Percent	Pmarp
HD at start	190	41.8	2.10
PD at start	182	40.0	2.01
Pre-emptive transplantation	82	18.0	0.90
Unknown	1	0.2	0.01

Table 3: PRD distribution at start of KRT in 2019

Cause of renal failure, among patients < 15 years of age, starting KRT in 2019 according to new and old PRD coding.

	\mathbf{N}			Percent		Pmarp	
	New	Old	New	Old	New	Old	
CAKUT	185	133	40.7	29.2	2.04	1.47	
Glomerulonephritis	81	75	17.8	16.4	0.89	0.83	
Cystic kidney disease	44	64	9.7	14.1	0.49	0.71	
Hereditary nephropathy	-	28	-	6.1	-	0.31	
Metabolic and tubulointerstitial disorders	16	10	3.5	2.2	0.18	0.11	
Toxic/ischemic renal failure	5	3	1.1	0.7	0.06	0.03	
HUS	16	16	3.5	3.5	0.18	0.18	
Vascular	4	4	0.9	0.9	0.04	0.04	
Miscellaneous	78	58	17.1	12.7	0.86	0.64	
Unknown	26	64	5.7	14.1	0.29	0.71	

Table 4: eGFR at start of KRT

Estimated GFR based on age, height and serum creatinine levels, calculated according to the new bedside Schwartz formula, among incident patients, age <15 years in 2019.

	\mathbf{N}	Percent
eGFR $<8 \mathrm{ml} \mathrm{min}^{-1}$ per $1.73 \mathrm{~m}^{2}$	82	42.1
eGFR $8-15 \mathrm{ml} \mathrm{min}^{-1}$ per $1.73 \mathrm{~m}^{2}$	90	46.2
eGFR $>15 \mathrm{ml} \mathrm{min}^{-1}$ per $1.73 \mathrm{~m}^{2}$	23	11.8

Prevalent paediatric patients on kidney replacement therapy on the $31^{\text {st }}$ of December 2019. Prevalent counts and prevalence per million age related population, by age groups.

Country	Total KRT		Age Groups		
		pmarp	Infants 0-4 years pmarp	Children 5-9 years pmarp	Adolescents 10-14 years pmarp
Albania	9	18.5	13.2	12.2	29.3
Austria	48	37.5	23.0	26.2	63.8
Belarus	36	22.5	17.9	12.4	39.5
Bosnia and Herzegovina	3	5.5	0.0	11.3	5.2
Bulgaria	10	10.0	0.0	14.6	14.8
Cyprus	10	70.5	63.9	81.7	65.4
Czech Republic	45	26.4	5.3	21.1	53.0
Denmark	37	38.7	26.1	25.8	62.0
Estonia	2	9.2	0.0	13.6	13.6
Finland	78	89.0	72.6	97.5	94.4
France	483	40.0	16.9	40.2	60.2
Georgia	18	24.0	7.2	19.5	51.2
Germany-CERTAIN*	301	26.5	7.9	27.6	45.4
Greece	39	25.5	12.9	15.4	45.6
Hungary	53	37.3	14.9	26.2	68.6
Iceland	3	44.1	47.0	0.0	85.8
Ireland	11	10.9	6.4	5.7	20.4
Latvia	6	19.7	9.6	20.2	29.5
Lithuania	9	21.3	0.0	27.7	38.2
Malta	2	29.3	0.0	43.3	46.4
North Macedonia	10	29.6	9.1	8.6	71.2
Norway	45	48.3	37.6	44.1	62.0
Poland	221	37.8	21.9	29.0	62.2
Portugal	65	46.4	20.8	47.7	67.0
Republic of Serbia	28	28.2	9.3	18.2	55.9
Romania	59	19.4	6.0	11.3	39.6
Russia	521	24.2	10.4	23.5	41.6
Slovakia	17	19.7	13.7	17.2	28.9
Slovenia	10	31.8	19.7	54.3	19.5
Spain	340	49.2	18.6	46.1	77.0
Sweden	96	52.5	29.8	54.7	73.0
the Netherlands	118	43.2	9.3	49.2	68.1
Turkey*	378	19.7	9.4	19.3	30.4
Ukraine	119	18.6	8.3	15.3	30.5
United Kingdom\#	668	60.2	25.9	59.2	94.8
Total ${ }^{*}$	3219	35.5	15.8	33.3	57.2

*Data from the German transplantation registry are based on 18 transplantation centres. In 2019, 130 patients under the age of 21 years were transplanted in Germany. These numbers are an underestimation of true incidence. The incidence in Turkey is an underestimation of the true incidence. Therefore, Germany, and Turkey were excluded from the overall incidence.
\#Does not include Scottish patients.

Prevalent paediatric patients on kidney replacement therapy on the 31st of December 2019. Prevalent counts and prevalence per million age related population, by gender and treatment modality.

	Gender			Treatment Modality		
Country	Males		Female	HD	PD	

[^0]
Table 6: Hypertension and height in children on KRT

Height z-score based on recent national reference charts, or, if unavailable, on newly developed reference charts for Northern and Southern Europe (Bonthuis et al, PLoS ONE 7(8): e42506. doi:10.1371/journal.pone.0042506). Blood pressure z-score was calculated following the fourth report of the National High Blood Pressure Education Program (NHBPEP). Hypertension was defined as havina a svstolic or diastolic blood pressure z-score ≥ 1.64 ($\geq 95^{\text {th }}$ percentile) (Pediatrics 2004: 114:555-576).

Dialysis

Blood pressure

\% of patients with hypertension
Mean z-score systolic blood pressure
Mean z-score diastolic blood pressure

Height

\% of patients with height z-score <-2
Mean height z-score
47.6 (45.8-49.5) $\quad 29.1$ (28.0-30.2)
$1.33(1.27-1.38) \quad 0.80(0.77-0.83)$
$1.20(1.16-1.25) \quad 0.71(0.68-0.73)$

Figure 1: Five-year patient survival

Incident KRT patients under the age of 15 starting KRT from 2007 onwards. Follow-up till 31 st of December 2019.
 included. Follow-up till $31^{\text {st }}$ of December 2019.

Cause of death	Number of deaths	Percent
Myocardial ischemia and infarction	4	0.9
Cardiac failure	53	12.4
Cardiac arrest/sudden death other cause	62	14.5
Cerebro-vascular accident	36	8.4
Infection	116	27.1
Suicide/refusal or cessation of treatment	6	1.4
Treatment withdrawn	9	2.1
Malignant disease	2	0.5
Other identified cause of death	22	5.2
Cause of death uncertain/not determined	117	27.4

ESPN/ERA Registry Scientific Committee

Jérôme Harambat, France*
Enrico Vidal, Italy*
Rezan Topaloglu, Turkey
Alberto Ortiz, Spain
Jun Oh, Germany
Manish Sinha, United Kingdom
Timo Jahnukainen, Finland
Kitty Jager, The Netherlands

* ESPN representatives on the ERA Registry Committee

ESPN/ERA Registry

Department of Medical Informatics
Academic Medical Center
room J1B-125
1105 AZ Amsterdam
The Netherlands

Publication list 2021

1. Ten-year trends in epidemiology and outcomes of pediatric kidney replacement therapy in Europe: data from the ESPN/ERA-EDTA Registry. Bonthuis M, Vidal E, Bjerre A, Aydoğ Ö, Baiko S, Garneata L, Guzzo I, Heaf JG, Jahnukainen T, Lilien M, Mallett T, Mirescu G, Mochanova EA, Nüsken E, Rascher K, Roussinov D, Szczepanska M, Tsimaratos M, Varvara A, Verrina E, Veselinović B, Jager KJ, Harambat J. Pediatr Nephrol 2021 Aug;36(8):2337-2348
2. Growth in children on kidney replacement therapy: a review of data from patient registries. Bonthuis M , Harambat J, Jager KJ, Vidal E. Pediatr Nephrol 2018 Aug;36(8): 2563-2574.
3. Kidney transplantation in small children: Association between body weight and outcome- a report from the ESPN/ERA-EDTA Registry. Boehm M, Bonthuis M, Aufricht C, Battelino N, Bjerre A, Edvardsson VO, Herthelius M, Hubmann H, Jahnukainen T, de Jong H, Laube GF, Mattozzi F, Molchanova EA, Muñoz M, Noyan A, Pape L, Printza N, Reusz G, Roussey G, Rubik J, Spasojević-Dimitrijeva B, Seeman T, Ware N, Vidal E, Harambat J, Jager KJ, Groothoff J. Transplantation 2021 (Epub ahead of print).

Provided extended data to the ESPN/ERA-EDTA Registry

Provided limited data to the ESPN/ERA-EDTA Registry

Provided data via the ERA-EDTA Registry

We sincerely thank the following countries and persons for their willingness to provide data to the Registry

Albania	D Shtiza	Italy	B Gianoglio, C Corrado, I Guzzo,
Austria	F Engler, J Kerschbaum, G Mayer,		F Paglialonga, C Pecoraro, E Vidal, E Verrina
	R Kramar	Latvia	A Popova, V Kuzema
Belarus	S Baiko, O Raikevic-Liachovskaya,	Lithuania	A Jankauskiene, S Rudaitis
	A Duderavich, I Sheuchuk	Malta	\checkmark Said-Conti
Belgium	K van Hoeck and the Centre contributors	Moldova	S Gatcan, O Berbeca, N Zaikova, N Revenco
	to the Belgian Registry Committee	Montenegro	S Pavićević
Bosnia Herzegovina	D Pokrajac	North Macedonia	E Sahpazova, N Abazi
Bulgaria	D Roussinov	Norway	A Âsberg, AV Reisæter, A Bjerre
Croatia	D Milosevic, M Ban, J Slavicek,	Poland	A Zurowska, I Zagozdzon
	D Arapovic, S Abdovic	Portugal	C Mota, R Stone
Cyprus	A Elia	Romania	G Mircescu, L Garneata
Czech Republic	T Seeman, K Vondrak	Russia	EA Molchanova, EV Zakharova, AM Andrusev
Denmark	K Hommel	Serbia	M Kostić, B Spasojević, M Cvetković,
Estonia	Ü Toots		I Gojković, D Paripović, G Miloševski-Lomić
Finland	J Helve, P Finne, P-H Groop	Slovakia	L Podracka, G Kolvek
France	C Couchoud, M Lassalle, E Berard	Slovenia	N Battelino, G Novljan, J Buturovic-Ponikvar
Georgia	T Davitaia	Spain	A Alonso Melgar and the
Germany - CERTAIN	K Krupka, B Höcker, L Pape, B Tönshoff		Spanish Paediatric Registry.
Germany - KfH	K Rascher, E Nüsken, L Weber, G von Gersdorff, Jörg Dötsch, F Schaefer	Sweden	KG Prütz, M Stendahl, M Evans, S Schön M Segelmark, T Lundgren
Greece	G Moustakas, A Kapogiannis, A Mitsioni, N Printza	Switzerland	E Maurer, GF Laube, CE Kuehni, P Parvex, S Tschumi, L Mader
Hungary	G Reusz, Cs Berecki, A Szabó, T Szabó, A Barczi, O Lakatos, A Végh	The Netherlands	L Heuveling, S Volgelaar on behalf of the Nefrovisie foundation
Iceland	R Palsson, V Edvardsson	Turkey	S Bakkaloglu
Ireland	A Awan, AK Heggenstaller, C Sweeney,	Ukraine	DD Ivanov, SP Fomina
	N Dolan	United Kingdom	L Plumb, F Braddon, W Magadi, MD Sinha, S Marks

[^0]: *Data from the German transplantation registry are based on 18 transplantation centres. In 2019, 130 patients under the age of 21 years were transplanted in Germany. These numbers are an underestimation of true incidence. The incidence in Turkey is an underestimation of the true incidence. Therefore, Germany, and Turkey were excluded from the overall incidence.
 \#Does not include data from Scottish patients.

